Rumus Matematika SMA Kelas 11- Persamaan Lingkaran. Lingkaran adalah tempat kedudukan titik-titik pada suatu bidang yang berjarak sama terhadap suatu titik tertentu.
Berikut ini rumus-rumus yang dipakai dalam materi tentang persamaan lingkaran yang dipelajari pada jenjang SMA.
PERSAMAAN LINGKARAN
1. Persamaan lingkaran yang berpusat di P(0,0) dan memiliki jari-jaru (r) adalah: x²+y²=r²
2. Persamaan lingkaran yang berpusat di P(a,b) dan memiliki jari-jari (r) adalah: (x-a)²+(y-b)²=r²
3. Bentuk umum persamaan lingkaran: x²+y²+2Ax+2By+C=0
Titik pusat lingkaran: P(-A,-B)
Jari-jari lingkaran: r² = A²+B²-C
dengan:
A,B dan C adalah bilangan real
A²+B²≥C
KEDUDUKAN TITIK TERHADAP LINGKARAN
1. Untuk titik pusat lingkaran P(0,0)
a. Suatu titik A(x,y) terletak di dalam lingkaran yang berpusat di P(0,0) dan berjari-jari r, jika x²+y²<r².
b. Suatu titik A(x,y) terletak pada lingkaran yang berpusat di P(0,0) dan berjari-jari r, jika x²+y²=r².
c. Suatu titik A(x,y) terletak di luar lingkaran yang berpusat di P(0,0) dan berjari-jari r, jika x²+y²>r².
2. Untuk titik pusat lingkaran P(a,b)
a. Suatu titik A(x,y) terletak di dalam lingkaran yang berpusat di P(a,b) dan berjari-jari r, jika (x-a)²+(y-b)²<r².
b. Suatu titik A(x,y) terletak pada lingkaran yang berpusat di P(a,b) dan berjari-jari r, jika (x-a)²+(y-b)²=r².
c. Suatu titik A(x,y) terletak di dalam lingkaran yang berpusat di P(a,b) dan berjari-jari r, jika (x-a)²+(y-b)²>r².
KEDUDUKAN GARIS TERHADAP LINGKARAN
Misalkan g garis dengan persamaan y=ax+b dan L lingkaran dengan persamaan x²+y²=r².
Kedudukan garis g terhadap sebuah lingkaran ditentukan oleh nilai diskriminan (D) yang diperoleh dengan rumus: D=(1+a²)r² – b²
dimana:
D>0 <—> garis g memotong lingkaran di dua titik berlaianan.
D=0 <—> garis g menyinggung lingkaran.
D<0 <—> garis g tidak memotong maupun menyinggung lingkaran.
PERSAMAAN GARIS SINGGUNG LINGKARAN
1. Persamaan Garis Singgung Melalui Suatu Titik pada Lingkaran Berpusat P(0,0) dan Berjari-jari r.
Persamaan garis singgung yang melalui titik (x₁,y₁) pada lingkaran x²+y²=r² adalah: x₁x+y₁y=r²