Berikut ini akan saya paparkan beberapa sifat dari Determinan matriks, diantaranya yaitu:
1. Jika matriks A memiliki suatu baris/kolom yang semua elemennya nol, maka det(A) = 0
Contoh:
$$\begin{pmatrix} 1 &2 &3 \\ 0 &0 &0 \\ 1 &1 &4 \end{pmatrix}=0$$
karena ada baris yang semua elemennya nol, pada contoh diatas yaitu baris ke dua. Sehingga apabila dihitung nilai determinannya maka yang akan dihasilkan yaitu 0.
$$\begin{pmatrix} 0 &2 &3 \\ 0 &5 &8 \\ 0 &1 &4 \end{pmatrix}=0$$
karena ada kolom yang semua elemennya nol, yaitu kolom pertama. Sehingga apabila dihitung nilai determinannya maka yang akan dihasilkan yaitu 0.
2. Jika ada satu baris atau kolom matriks A merupakan kalipatan dari baris atau kolom yang lain, maka det(A) = 0
Contoh:
$$\begin{pmatrix} 1 &2 &3 \\ 2 &4 &6 \\ -1 &5 &1 \end{pmatrix}=0$$
karena ada baris yaitu baris ke dua yang semua elemennya merupakan kelipatan dari baris lainnya yaitu baris pertama.Sehingga apabila dihitung nilai determinannya maka yang akan dihasilkan yaitu 0.
$$\begin{pmatrix} 2 &2 &3 \\ 5 &5 &8 \\ 1 &1 &4 \end{pmatrix}=0$$
$$\begin{pmatrix} 2 &2 &3 \\ 5 &5 &8 \\ 1 &1 &4 \end{pmatrix}=0$$
karena ada kolom yang semua elemennya merupakan kelipatan dari kolom lainnya yaitu pada kolom pertama dan ke dua. Dimana kolom pertama merupakan kelipatan dari kolom ke dua.
3. Jika Matriks A merupakan matriks segitiga atas atau matriks segitiga bawah, maka determinan matriks A adalah perkalian unsur-unsur diagonal utamanya.
Contoh:
$$\begin{pmatrix} 1 &2 &3 \\ 0 &4 &5 \\ 0 &0 &6 \end{pmatrix}=(1)(4)(6)=24$$
karena matriks tersebut merupakan matriks segitiga maka determinannya yaitu perkalian unsur-unsur diagonal utama yaitu 1, 4, dan 6.
Semoga Bermanfaat.
4 komentar di “Beberapa Sifat Determinan Matriks”
Tinggalkan Balasan
Anda harus masuk untuk berkomentar.
good mksh ka
Semoga bermanfaat. Jangan lupa berkunjung kembali.